冶金工程技术专题报告——冶金物理化学

作者:张家芸 闫柏军              发布时间:2013-06-26


分享到:0

 ↑ ↑

冶金物理化学分学科发展↑↑ ↑
张家芸↑↑闫柏军↑↑ ↑
 ↑ ↑
Advances in Physical Chemistry of Metallurgy ↑↑↑ ↑
Zhang Jiayun, Yan Baijun↑↑ ↑
Physical chemistry of process metallurgy is the basis of the technology fo↑r ferrous a↑nd non-ferrous metallurgical processes. In recent two years, the main progress a↑nd achievements are described bellow. ↑↑①↑↑By applying the concept of controllable oxygen flow, metallic chromium a↑nd niobium were successfully obtained using electrolytic technique with solid-electrolyte oxygen permeable membrane (SOM). The technique has the following features: high current efficiency, high electrolytic rate a↑nd high electrical current density, no side reactions generated. ↑↑②↑↑With the thought of green chemistry, an industrialized a↑nd modeled project↑↑ of clean production technique of chromates a↑nd other chmical products in 10K ton scale ↑↑was perfo↑rmed in YiMa City, Henan province after successfully proposed the clean production technique. The project passed the state evaluation. The conclusions of the evaluation are described bellow. The technique was confirmed to be frontier↑↑,↑↑a↑nd ↑↑feasible; the key equipments were reasonably designed a↑nd stably operated, the chromium-receiving ratio in industrial trials can reach ↑>98%. ↑↑③↑↑A new a↑nd clean TiO↑2↑ production technique was also proposed with thought of the green chemistry a↑nd the so- called “sub-molten salt” technique. The technique avoids the conventional steps of high temperature oxidation, reduction a↑nd chlo↑rination. The new technique has many advantages comparing with the conventional technique, which as known is energy consuming, a↑nd environmental polluting. ↑↑④↑↑Vanadium extraction from vanadium containing slags was symmetrically investigated in recent years, involving the additives selection, effects of TiO↑2↑ a↑nd Al↑2↑O↑3 ↑ on the enrichment of vanadium oxides in the slag. ↑↑⑤↑↑A new kinetic model fo↑r materials oxidation was developed. The model applications to SIALON a↑nd many other ino↑rganic-nonmetallic materials have indicated its universal feature fo↑r predicting the anti-oxidation kinetics of materials at high temperature. The model has shown to be perspective to play an instructive pole in the development a↑nd selection of high temperature oxidation-resistant ino↑rganic nonmetallic materials. ↑↑⑥↑↑Proposed “RTO metal cover up section cutting techniques fo↑r micro/nano scale characterization↑↑”↑↑.. This technique was awarded national invention prize. Using RTO metal cover up technique, the preparation of specimen fo↑r micrographic observation with transmission electron microscope o↑r high-resolution electron microscope was solved. The technique has received widespread applications to the studies a↑nd developments of various metallic, nonmetallic micro- o↑r nano-materials. Regarding the development of physical chemistry fo↑r metallurgy of china in resent years, two branches, the theo↑ry of solution a↑nd metallurgical melts a↑nd the physical chemistry of comprehensive utilization of resources maintain the wo↑rld frontier level. The electrical chemistry of metallurgy a↑nd energy resources developed very fast. While, in three directions, thermodynamics a↑nd kinetics of metallurgy, computational physical chemistry of metallurgy, there exist a distance of 3 to 5 years between our developing degree a↑nd the wo↑rld advanced level. It is trusted that under pursuance of co↑rrect stratagem a↑nd policies, the physical chemistry of China will develop faster, will play mo↑re impo↑rtant role in China’s metallurgical industries a↑nd make its contribution fo↑r China to be a strong country in iron a↑nd steel industry in the wo↑rld.↑↑↑ ↑
 ↑ ↑
一、引 言↑↑↑ ↑
冶金过程物理化学↑↑(↑↑简称冶金物化↑↑)↑↑是钢铁及有色金属冶金工艺技术的基础。国际冶金物理化学学科始于上世纪三十年代。我国冶金物理化学学科由魏寿昆等老一辈冶金科学家创立↑↑, ↑↑其发展史可以追溯到上世纪五十年代中期。历经↑↑50↑↑余年的发展,我国冶金物化已成为包括↑↑7↑↑个主要分支的冶金工程二级学科。它们是↑↑①热力学;②冶金动力学;③冶金与能源电化学;④冶金熔体与溶液理论;⑤材料制备物理化学;⑥资源(综合提取与利用)与环境(保护)物理化学;⑦计算冶金物理化学。历经几代人的努力,我国冶金物化已成为基础较好、研究方向齐全、学术队伍实力雄厚、人才梯队结构合理、欣欣向荣发展的学科。其发展历程在相关文献中已有介绍,此处不拟赘述↑↑[1]↑↑。↑↑ ↑
        从有关资料中可以清楚地看到我国冶金工业发展对冶金物化学科一些新分支的产生和发展的推动作用。在近两年,这种情况显现得更为突出。资源、能源及环境是我国钢铁(及有色金属)工业发展的三个瓶颈。从冶金工艺和技术路线的源头上解决上述问题是发展的长远和主要目标。这对当前冶金物化学科的发展趋势产生了深刻的影响。↑↑↑ ↑
我国钢铁产量已居世界首位数年。宝钢、武钢等大型钢铁企业在设备及生产的主要技术经济指标方面已经与达到国外同类先进企业的水平。但就我国钢铁生产的总体而言,与发达国家在钢质量和品种结构方面依然存在差距。其中有设备、原材料和管理中存在问题,而工艺技术中问题也是重要原因。↑↑ ↑
我国沿海地区的大型钢铁企业如宝钢等主要依靠进口精矿进行生产,而内地和一些中小企业则要利用我国自己的铁矿资源。我国铁矿(及其他金属矿藏)的主要特点可用贫、杂、难三个字来概括。“贫”是品位低。“杂”:一方面是含多种金属的共生矿多,如包头白云鄂博铁矿含稀土与铌,攀枝花铁矿含钒和钛;另一方面是不少铁矿所含磷或硫较高。“难”是难于用常规方法选矿,难于用常规方法提取金属。要解决我国铁矿资源的综合、高效利用问题要求加强冶金物化在矿产资源综合利用物理化学方向的研究。↑↑ ↑
由于我国是世界冶金生产规模最大的国家,加上我国是以煤作为主要能源的国家,冶金生产过程排放总量很大、总能耗特别是煤耗很大。因此,发展节能、减排、清洁生产的新工艺、新技术及综合利用冶金二次资源如废渣、废水和废气等是我国冶金工业发展中非常紧迫的任务。这也要求我国冶金物化学学科加强在相应方向的研究,提出新理论和新方法,以适应改进相应的工艺和技术、研究开发新工艺和新技术的要求。↑↑ ↑
我国钢铁工业的产品结构不够合理,其中的优质钢(包括洁净钢)、合金钢特别是高合金钢所占比重不及发达国家,也远不能满足国民经济发展的需要。改变这一状况极需加强基础研究作为相关技术的支撑。↑↑ ↑
此外,世界及我国冶金生产发展出现的趋势中还包括:冶金↑↑-↑↑材料的一体化趋势、钢铁和有色金属冶金更紧密结合的趋向。近终型连铸、粉末冶金中的自蔓延、冶金固体废料直接生产无机非金属材料(水泥和耐火材料)等技术出现和发展是冶金↑↑-↑↑材料的一体化趋势的主要体现。我国钢铁和有色金属冶金企业更加重视铁和有色金属的综合提取反映了两者更加紧密结合的趋势。生产发展的新趋势促进了冶金物化学科中材料制备物理化学和资源综合利用方向的发展。↑↑ ↑